

IRAK-4 as a therapeutic target in primary CNS lymphoma

Christina von Roemeling, PhD

Clinical and Translational Science Institute UNIVERSITY of FLORIDA Primary CNSL: represents ~4% of all brain tumors

Secondary CNSL: 2-10% of pts with systemic disease develop SCNSL

Epidemiology

- Males>Females
- Immunodeficiency: High Risk (HIV: 35Y med age @ diagnosis)
 - Increasing incidence w/ higher age

W 998 : L 439

CNS Lymphoma

Cellorigin: >90% diffuse large B cell lymphoma

Location: Parenchyma, dura, leptomeninges, cranial nerves, ntraocular, spinal cord

> Predilection for periventricular (and perivascular) niche

Dtsch Arztebl Int. 2018; 115: 419-26. Cancers. 2021; 13, 5372.

.BJH. 2022; 196, 473-487. J Hematol Oncol. 2022; 15:136.

PCNSL Treatment

BioRender.com

The oncogenic landscape of PCNSL

Predicted oncogenic drivers (IntOGen)

kataegis

PCNSL Treatment

Dtsch Arztebl Int. 2018; 115: 419-26. Cancers. 2021; 13, 5372. BioRender.com

.BJH. 2022; 196, 473-487. J Hematol Oncol. 2022; 15:136.

MyD88: In the driver's seat of lymphomagenesis

- High frequency of
 hotspot' L265P gain-of-function mutation
- Constitutive activation of NF-κB and MAPK
- Supports proliferation and survival
- Causes immune suppression through IL-6 & IL-10 production → STAT3 activation

Emavusertib (CA-4948)

- First-in-class inhibitor
- High binding affinity to human IRAK4 (23 nM), high predicted binding affinity to murine IRAK4
- Well tolerated; safety profile allows long-term treatment and combination with other therapies

Project Overview

- Demonstrate myddosome activation in PCNSL
- Determine CNS penetration of emavusertib (CA-4948)
- Assess if CNS concentration
 reach therapeutic levels
- Evaluate anti-tumor efficacy of emavusertib in preclinical models of PCNSL

Myddosome expression in normal human brain

- Little to no expression of MyD88 downstream constituents
 - No CD45 infiltration

Myddosome expression in human PCNSL

• High CD45 infiltration

Myddosome expression in human PCNSL

Emavusertib anti-lymphoma activity

- Dose-dependent decrease in lymphoma proliferation
- MYD88 L265P sensitivity

 Anti-tumor activity in immune-competent MYD88 WT lymphoma

CNS penetration (preclinical)

- Emavusertib can cross the BBB
- Relevant therapeutic dose levels detected in naïve parenchyma and CSF
- No notable changes in permeability in tumorbearing mice

LC-MS/MS detection of CA-4948 in murine CNS

Parameter	Units	Plasma	CSF (Naïve)	Brain (Naïve)	Brain (Tumor)
C _{max}	µg/mL or µg/g	60.3 ± 19.26	1.42±0.52	3.25±1.41	3.22±0.18
T _{max}	h	0.38 ± 0.14	0.25	0.5	0.83±0.29
T _{1/2}	h	2.73	1.33	1.39	1.19
AUC _{0-8 h}	h*µg/mL or h*µg/g	189.51	2.91	8.09	8.68
AUC _{0-∞}	h*µg/mL or h*µg/g	224.46	2.96	8.72	9.39
Brain to plasma ratio	%		1.53	4.26	4.95

Emavusertib Preclinical PCNSL anti-tumor activity

Emavusertib Preclinical PCNSL anti-tumor activity

• Emavusertib reduces proliferative capacity of A20 tumors

MAPK biomarker downregulation

NF-kB biomarker downregulation

NF-kB biomarker downregulation

Clin Can Res. 2023; (29) 9

Therapeutic modulation of PCNSL TME?

- NF-кB+ astrocytes
- Implicates emavusertib therapeutic modulation in TME
- MyD88-independent activity

- NF-κB+ immune cells (tumor)
- Implicates emavusertib therapeutic modulation in cancer cells
- MyD88-dependent activity

Lymphoma Study (NCT03328078)

Study Overview

1.Part A1 (completed): dose escalation of emavusertib as **monotherapy** in relapsed or refractory HNL (n=34): 50 mg QD to 400 mg BID

• Monotherapy RP2D: 300 mg BID

2.Part A2: dose escalation of emavusertib in combination with ibrutinib

- Dose levels of 200-300 mg BID combined with full ibrutinib as per approved label (n=13)
- 200 mg BID of emavusertib is well tolerated in combination
- In transition to Part B

3.Part B: expansion cohort of emavusertib in combination with ibrutinib:

Focus on pCNSL

Pharmacokinetics (human)

- Excellent oral bioavailability
- Rapidly absorbed, maximum plasma concentrations 0.5-8 hours after dosing
- Half-life ~ 6 hours
- Dose-proportional increase in exposure
- Minimal accumulation following single daily dose

NHL Patient Responses

6 patients were treated with emavusertib (CA-4948) monotherapy for 1 to 3 years

- 3 patients ongoing with treatment with duration ranging 19-41 months
- 1 FL patient achieved PR after 13+ cycles of treatment
- 1 WM patient achieved PR after 21 cycles of treatment, and IgM values continued to decrease (~80% reduction)

Good long-term monotherapy tolerance of emavusertib CA-4948 at 200-300 mg BID

IgM values were used as the measure for tumor burden for WM/LPL patients; sum of product of diameters of target lesions were used as the measure for other lymphoma types.

Previously presented at IWWM 2022 Data extracted on May 6th, 2022

(NCT03328078)

Study Design

TakeAim-Lymphoma (NCT03328078)

Part A2: dose escalation of emavusertib in combination with ibrutinib

- · Endpoints include safety, tolerability, and RP2D
- As of October 12th, 2022, two patients with relapsed/refractory CNS lymphoma (CNSL) have been treated with emavusertib + ibrutinib combination therapy.

Preliminary Efficacy Data From Patients with Combination Therapy

Best Response

- Majority of patients had decreases in tumor burden or stable disease
- 4 patients that received prior BTK treatment show promising anti-cancer activity (SD/CR)
- 4/13 patients were not evaluable for tumor burden

Baseline Characteristics

	Case 1	Case 2
Gender	Female	Male
Age (yrs)	66	65
Diagnosis	Primary CNSL	Secondary CNSL
MYD88 mutation	Yes (L265P)	NA
Prior BTK inhibitor / Best Response	Yes / PR	No / NA
# of measurable disease at baseline	2	1
Prior lines of anti-cancer therapy	2	4
Prior bone marrow transplant	No	Yes (autologous)

Safety Profile

Grade 3+ Treatment-Related Adverse	emavusertib (300 mg BID) + ibrutinib (560 mg QD)		
Event	Case 1	Case 2	
Thrombocytopenia	Gr 3	-	
Pain	Gr 3	-	
Muscular weakness	Gr 3	-	
Blood Bilirubin increased	-	Gr 3	
Alanine aminotransferase increase	-	Gr 3	
Aspartate aminotransferase increase	-	Gr 3	

Data extracted October 12th, 2022

- · No DLT and no treatment-related SAE was reported
- · Majority of Gr 3 TRAEs were recovered or resolved

Change in tumor burden over time

- Preliminary efficacy data: 1 CR and 1 SD
- Case 1 was originally intolerant to high-dose methotrexate-based chemoimmunotherapy & achieved PR after switching to ibrutinib. Patient then achieved CR with combination ibrutinib+emavusertib
- Case 2 achieved and maintained radiographic SD for ~5 mo, with clinical resolution of associated symptoms

Summary

- Confirmation of IRAK4 activation in human PCNSL
- Emavusertib crosses BBB & reaches therapeutic dose levels in CNS
- Evidence of targeted IRAK4 inhibition: Reduced Ki67, MAPK biomarker downregulation
- Anti-tumor activity (preclinical): dosedependent survival outcomes
- Anti-tumor activity (clinical): 2 cases of tumor response (CNSL)
- Preliminary data suggests combination treatment may overcome ibrutinib resistance in hematological malignancies
- pCNSL cohort will be expanded (open at UNCC)

Thank you

UF Preston A. Wells, Jr. Center for Brain Tumor Therapy UNIVERSITY of FLORIDA

Duane A. Mitchell, M.D., Ph.D. Bently Doonan, M.D. Kelena Klippel, M.S. Rylynn Russell Daniel Schulz, Ph.D. Lan Hoang-Minh, Ph.D. Vrunda Trivedi, M.S. Chenglong Li, Ph.D. Paul Castillo, M.D. Elizabeth Ogando-Rivas, M.D. The Florida Center for Brain Tumor Research UF Drug Development Core

Grzegorz Nowakowski, M.D. Han W. Tun, M.D. Madiha Iqbal, M.D.

Jamison Hoffman, Pharm. D.

OUR BRAINS HELPING YOURS