Development of IRAK4 Kinase Inhibitor CA-4948 for NHL

Robert Booher, PhD, Translational Sciences Dena Grayson, MD, PhD, Clinical Development *4th Waldenstrom Roadmap Symposium* April 07, 2019 CURIS

NASDAQ: CRIS

Robert Booher, Ph.D. Receives direct remuneration from Curis

Dena Grayson, M.D., Ph.D. Receives direct remuneration from Curis

Interleukin-1 Receptor-Associated Kinase-4 (IRAK4)

IRAK Kinase Family

- IRAK4 is a serine/threonine kinase that is a key component in the signal transduction pathways mediated by Toll-like receptors (TLRs) and interleukin-1 receptor (IL-1R)
- Ligand-bound TLR/IL1R recruits the MYD88 adaptor protein, followed by IRAK4 and IRAK1, forming the Myddosome with activated IRAK4, leading to phosphorylation and activation of IRAK1

Activating Mutations in TLR/IL-1R and BCR Signaling Pathways Resulting in NF-kB Induction CL

CA-4948, A Selective Oral Inhibitor of IRAK4 for the Treatment of NHL

CA-4948:

- Selective, small molecule inhibitor of IRAK4
- > ATP-competitive, type 1 inhibitor, reversible
- Excellent drug-like properties:
 - Orally bioavailable (>100% dog/mouse)
 - Moderate plasma binding (77% human)
 - Stable in plasma, liver microsomes, hepatocytes
 - No inhibition of 7 major CYP450s
 - No significant metabolism in vitro
 - Humans: rapid absorption/clearance, $\rm T_{1/2}$ 6 hr, no accumulation with QD dosing

IRAK4/CA-4948 Co-crystal Structure

2.4Å resolution

CA-4948 Kinase Selectivity Profile

CA-4948 Binding Affinity Activity

	DiscoverX
Kinase	K _d (nM)
IRAK4	23
IRAK1	12,000
IRAK2	>20,000
IRAK3	8,500

Other top hits:

CLK1	10
CLK4	14
CLK2	20
FLT3	31
DYRK1A	25
Haspin (GSG2)	32
TrkA	130

Kinome illustration reproduced courtesy of Cell Signaling Technology.

CA-4948 IRAK4 Kinase Inhibitor Blocks the TLR/ IL-1R Induced Canonical NF-kB Signaling Pathway CURIS.

CA-4948 Selectively Inhibits NF-κB Signaling Pathways that are MYD88-Dependent

CA-4948 exhibits minimal inhibition of MYD88-independent NF-kB signaling pathway

CA-4948 Inhibits Constitutive Cytokine Production in MYD88mut ABC-DLBCL Cell Lines

Cytokine level after 21 hr treatment

In vitro cytokine production

CA-4948 Inhibits Cytokine RNA and Protein Production in DLBCL PDX Tumors

CA-4948 Inhibition of Cytokine RNA Expression in DLBCL PDX Tumors

- 150 mg/kg CA-4948, QDx4
- Tumors were harvested 6 hr post final dose
- RNA-Seq analysis (n=3)
- · Fold change is relative to vehicle
- p < 0.05 after Benjamini-Hochberg correction

CA-4948 Inhibition of Tumor-Derived Cytokines in Plasma From DLBCL PDX-Tumor Bearing Mouse

- 150 mg/kg CA-4948, QDx1
- Plasma collected 2, 6, and 24 hr post dose (n=3)

CA-4948 Shows Enhanced Efficacy in ABC vs. GCB DLBCL Tumors

Once-daily, oral CA-4948 dosing

CA-4948 Efficacy in 6 DLBCL PDX Models

		Mutations/Expression			CA-4948 Efficacy
DLBCL PDX	Cell of MYD88 B-Cell Receptor	BCL6	100 mg/kg, QD		
Model	Origin	Mutation	Mutation	(IHC)	%TGI
LY2345	ABC	WT	CARD11, TNFAIP3	2%	71**
LY2264	ABC	L265P	CD79B	60%	70**
LY2298	ABC	L265P	CD79B	20%	54*
LY2214	GCB	WT	WT	95%	38
LY2266	ABC	WT	WT	0%	30*
LY0257	ABC	L265P	WT	95%	0
					*p<0.05

**p<u><</u>0.001

CA-4948 BID Dosing Exhibits Improved/ Equivalent CRIS

LY2345 PDX: ABC DLBCL MYD88-wt, TNFIAP3-mt

Drug	Dosage (mg/kg)	Schedule	%TGI
CA-4948	75	BID	94
CA-4948	150	QD	77

Drug	Dosage (mg/kg)	Schedule	%TGI
CA-4948	75	BID	82
CA-4948	150	QD	81

CA-4948 Exhibits Combination Effects with Ibrutinib or Venetoclax in an ABC-DLBCL Xenograft Model

CA-4948 + Ibrutinib

Drug Dosage (mg/kg) %TGI (n=10) CA-4948 100 46* Ibrutinib 12.5 42* CA-4948 + Ibrutinib 100 + 12.5 87*

CA-4948 + Venetoclax

OCI-Ly10 (ap-1): ABC-DLBCL, MYD88-L265P, CD79A-mut, cells were previously animal-tumor passaged

CA-4948 In Vitro Effect on TLR Signaling Pathway in Mantle Cell Lymphoma Lines

CA-4948 downregulates TLR-stimulated signaling pathway components (P-IKK α/β) in MCL cell lines with classical NF- κ B signaling

CA-4948 ± Ibrutinib Exhibits Efficacy in MCL Xenograft Models with Canonical NF-κB Signaling

CA-4948 exhibits in vivo activity in MCL cell lines with chronic activated NF-KB pathway

CA-4948-101 Phase 1 First-in-Human Trial (NCT03328078)

IRAK4 Pathway Alterations in Hematologic Malignancies

Targeting IRAK4 in NHL: Rationale

Prevalence of Oncogenic MYD88-L265P Mutations

- Diffuse Large B-cell Lymphoma (ABC-DLBCL) 29%
 - Waldenstrom's Macroglobulinemia (WM) 95-97%
 - Lymphoplasmacytic Lymphoma (LPL) 79-96%
 - Orbital and ocular adnexal DLBCL 71%
 - Immune-privileged DLBCL (IP-DLBCL) 50-80%
 - Splenic Marginal Zone Lymphoma (SMZL) 6-10%
- Mucosa-Associated Lymphoid Tissue (MALT) 9%
 - Chronic Lymphocytic Leukemia (CLL) 2.9%

Targeting IRAK4 in AML/MDS: Rationale

Prevalence of TLR/IL-R1/MYD88 Alterations

- TLR or IL1R alterations
 - TLR1, 2 and 4 overexpression in MDS and AML
 - IL1R alterations in AML
 - 67% of primary AML pt samples exhibited profound IL-1 induced myeloid progenitor cell expansion
 - 40% of MDS pts had increased MYD88 expression in bone marrow CD34+ cells
 - 11% of MDS pts harbored the TLR2-F217S mutation, which induces enhanced NF-kB signaling
- MYD88 alterations
 - Overexpression in AML
- IRAK4 alterations
 - Overexpression in MDS

CA-4948-101 Phase 1 First-in-Human Trial (NCT03328078)

CURIS

Phase 1a: Single Agent Dose Escalation

- 3 + 3 Design
- Dose escalation guided by safety
- Starting dose = 50 mg QD
- N = ~ 30
- R/R NHL, including WM

Phase 1b: Dose Expansion

- WM
- ABC DLBCL MYD88mut
- ABC DLBCL MYD88wt

Objectives

- Primary: MTD or RP2D, Safety
- Secondary: pharmacodynamics, anti-cancer activity
- Exploratory: pharmacodynamics and correlative research

Treatment

Oral, once or twice daily, dosing in continuous 21-day cycles until unacceptable toxicity or progression

Participating country: US

CA-4948-101 Study Design and Cohort Accrual

CA-4948 Plasma Concentration (ng/mL) vs. Time Profile (Cycle 1)

At current sample analysis, CA-4948 exhibits:

- Rapid absorption and clearance (t_{1/2} ~ 6 hr)
- Dose proportional increase in exposure
- Increased trough levels with BID dosing

CA-4948 PK/PD Relationship Determined Using an *Ex-Vivo* Whole Blood Assay (Human)

In whole blood from healthy volunteers, cytokine production dropped when incubated with CA-4948

In whole blood from patients treated with CA-4948 cytokine production dropped, mirroring drug exposure

CA-4948 PK/PD (whole-blood TLR inhibitory assays) supports BID dosing

CA-4948 Development Plan Expansion in patients with MYD88 or TLR/IL-1R pathway altered lymphomas

Conclusions

- CA-4948 is a potent, oral inhibitor of IRAK4 Ser/Thr kinase with >500-fold selectivity vs. IRAK1
- CA-4948 inhibited constitutive or TLR-induced signaling in ABC-DLBCL and MCL cell lines and xenograft tumor models
- CA-4948 exhibited *in vivo* anti-tumor activity in NHL models with intact canonical NF-kB signaling, which was enhanced in combination with ibrutinib or venetoclax treatment
- Samples from patients treated with CA-4948 showed decreased TLR pathway activity when stimulated *ex vivo*
- Phase 1 PK analysis showed CA-4948 dose-dependent C_{max} and AUC increases, and higher trough levels with BID dosing
- Phase 1 has initiated the fifth dose cohort with 200 mg BID
- These results underscore the therapeutic potential of targeting IRAK4 kinase with CA-4948 alone and in combination with targeted agents for the treatment of NHL with MYD88 or TLR/IL-1R pathway alterations

Acknowledgments

- Participating patients and their families
- Investigators, research coordinators, and site personnel
 - Iris Isufi, Yale School of Medicine, New Haven, CT
 - Daniel Landsburg, Perelman School of Medicine, Univ. of Penn, Philadelphia, PA
 - Lori Leslie, Hackensack University Medical Center, Hackensack, NJ
 - Matthew A. Lunning, University of Nebraska Medical Center, Omaha, NE
 - Grzegorz Nowakowski, Mayo Clinic, Rochester, MN
 - Krish Patel, Swedish Cancer Institute, Seattle, WA
 - Allison Rosenthal, Mayo Clinic, Scottsdale, AZ
 - Han Tun, Mayo Clinic, Jacksonville, FL
 - Anas Younes, Memorial Sloan Kettering Cancer Center, New York, NY
- Colleagues at Curis and Aurigene

NASDAQ: CRIS