An Oral Small Molecule Combination Therapy Targeting PD-L1, VISTA and Tim-3 Immune Inhibitory Checkpoints Exhibits Enhanced Anti-tumor Efficacy in Pre-clinical Models of Cancer Adam S. Lazorchak^{1*}, Troy Patterson¹, Yueyun Ding¹, Pottayil G. Sasikumar² Naremaddepalli S. Sudarshan², Nagaraj M. Gowda², Raghuveer K. Ramachandra², Dodheri S. Samiulla², Mohammed Rafi², Nagesh Gowda², Sreenivas Adurthi², Jiju Mani², Rashmi Nair², Murali Ramachandra², David Tuck¹, Timothy Wyant¹

¹Curis, Inc., Lexington, MA; ²Aurigene Discovery Technologies Ltd., Bangalore, India

Introduction

CA-170 is a small molecule, orally bioavailable antagonist of the VISTA/PD-1H and PD-L1 immune checkpoint pathways which is currently undergoing Phase I clinical testing. CA-327 is a small molecule, orally bioavailable antagonist of Tim-3 and PD-L1 checkpoint pathways which is in pre-clinical development. CA-170 and CA-327 were identified based on their ability to selectively antagonize in vitro immune inhibitory checkpoint mediated suppression of human and mouse effector T cell function (table below).

	Human PBMCs IFN-γ Rescue (<i>in vitro</i>) EC ₅₀ (nM)				Mouse Splenocytes		
					IFN-γ Rescue (<i>in vitro</i>) EC ₅₀ (nM)		
Test Compound	PD-L1	PD-L2	VISTA/PD-1H	Tim-3	PD-L1	PD-L2	Tim-3
CA-170	56.43	149.0	49.35	no rescue	33.79	54.98	no rescue
CA-327	107.9	56.06	no rescue	168.4	110.7	84.86	86.91
Anti-PD-1 antibody clones: J116 (h) / J43(m)	44.17	93.52	N/T	N/T	69.96	89.88	N/T
Anti-VISTA antibody clone 730802(h)	N/T	N/T	25.82	N/T	N/T	N/T	N/T
Anti-Tim-3 antibody clones: F38- 2E2(h) / 8B.2C12(m)	N/T	N/T	N/T	67.7	N/T	N/T	42.01
NI/T - Not Tostad							

CA-170/CA-327 combination therapy shows increased anti-tumor efficacy, increased tumor growth inhibition and tumor immune modulation in the CT26 syngeneic mouse tumor model

N/I = INOT I estec

Increased activity of compensatory immune inhibitory checkpoint pathways is a key mechanism through which tumors escape targeted immune checkpoint inhibition therapy. Therapeutic approaches which target multiple functionally distinct immune inhibitory checkpoint pathways show substantially increased anti-tumor efficacy over mono-therapy approaches. Here we investigate the therapeutic potential of a CA-170/CA-327 oral combination therapy targeting the PD-L1, VISTA and Tim-3 pathways in non-clinical models of cancer.

Mice were implanted with subcutaneous CT26 tumor cells, individuals with established tumors were randomized into treatment groups (at day 12) and treated as indicated. CA-170 and CA-327 were orally dosed once daily as single agents or in combination. The anti-PD-1 antibody (clone 29F.1A12) or isotype control were dosed via IP injection once every 3-4 days. Anti-tumor efficacy (A) was estimated by determining the proportion of tumors within each treatment group whose size is 1.5-2.0, 2.0-2.5, or >2.5 standard deviations smaller than the vehicle mean tumor size. Mean tumor growth curves and percent tumor growth inhibition (%TGI) are shown (B & C). Anti-PD-1 %TGI is relative to the isotype control. The relative ratio of intra-tumor CD8⁺ T cells to regulatory CD4⁺ T cells (**D**), and proportion of PD-1⁺Tim-3⁻ CD8⁺ T cells (**E**) was measured by flow cytometry. C and D were analyzed by one-way ANOVA with Dunnett's multiple comparisons test (* p>0.05; *** p>0.001). ns= not significant

Tumor growth inhibition and modulation of the tumor immune response by CA-170 and CA-327 in the mouse CT26 model

CA-170/CA-327 combination therapy anti-tumor efficacy, tumor growth inhibition and drug pharmacokinetics in the MC38 syngeneic mouse model

Mice were implanted with subcutaneous CT26 (A & B) tumor cells, individuals with established tumors were randomized into treatment groups (at day 12) and treated as indicated. CA-170 and CA-327 were orally dosed once daily at 50 mg/kg or 100 mg/kg, respectively. The anti-PD-1 antibody (clone 29F.1A12) or isotype control was dosed via IP injection (100 µg/mouse) once every 3-4 days. Mean tumor growth curves were plotted for each treatment group (A) and tumor growth inhibition (TGI) was calculated at the end of the study (B). Anti-PD-1 %TGI is relative to the isotype control. The number of intra-tumor PD-1+Tim-3+ CD8+ T cells from **A** was measured by flow cytometry (C) and analyzed by unpaired t-test. The relationship between the number of total tumor CD45⁺ cells, the number of CD8⁺PD-1⁺IFN-γ⁺ T cells and the

Mice were implanted with subcutaneous MC38 tumor cells and were treated as indicated 4 days after tumor cell implantation. CA-170 and CA-327 were orally dosed once daily as single agents or in combination. Anti-tumor efficacy (A) was estimated by determining the proportion of tumors within each treatment group whose size is 1.5-2.0, 2.0-2.5, or >2.5 standard deviations smaller than the vehicle mean tumor size at day 16. Mean tumor growth curves and percent tumor growth inhibition (%TGI) are shown (**B** & **C**). Plasma concentrations of CA-170 (**D**) or CA-327 (**E**) were measured 0.5, 1 and 4 hours after the last dosing in this study. **C** was analyzed by one-way ANOVA with Dunnett's multiple comparisons test (* p>0.05; *** p>0.001).

