Phase 1 trial of CA-170, a novel oral small molecule dual inhibitor of immune checkpoints PD-1 and VISTA, in patients with advanced solid tumors or lymphomas

James J. Lee1, John D. Powderly II2, Manish R. Patel2, Joshua Brody3, Erika Paige Hamilton3, Jeffrey R. Infante4, Gerald Steven Falchook4, HongWei Wang4, Lisa Adams2, Lucy Gong2, Anna W. Ma2, Timothy Wyant2, Adam Lazorchak7, Shefali Agarwala7, David P. Tuck7, Adil Daud8

1 University of Pittsburgh Cancer Institute, Pittsburgh, PA; 2 Carolina Bio-Oncology Institute, Huntsville, NC; 3 Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL; 4 Icahn School of Medicine at Mount Sinai, New York, NY; 5 Sarah Cannon Research Institute and Tennessee Oncology, PLLC, Nashville, TN; 6 Sarah Cannon Research Institute at HealthONE, Denver, CO; 7 Curis, Inc., Lexington, MA; 8 University of California, San Francisco, San Francisco, CA

#181230 ASCO 2017

Introduction

- To determine the pharmacodynamic effects of CA-170 on selected immune checkpoints that negatively regulate T-cell function and regulate the anti-tumor immune response (Lu et al. 2015, PNAS 112:6802-7).
- VISTA is highly expressed on tumor infiltrating myeloid cells (i.e. macrophages, MDSCs) and may be expressed on tumor infiltrating T cells.
- VISTA and PD-L1 expression increases on tumor infiltrating immune cells following ipilimumab treatment, suggesting upregulation of alternative checkpoints (Gao J et al, 2016).

CA-170: First-in-class, small molecule oral PD-1/L1 & VISTA antagonist

In Vitro Rescue of Suppressed Human T Cell Effector Function

In Vivo Anti-tumor Efficacy

Oral Bioavailability

Study Rationale

- Preclinical and clinical data show that the different immune checkpoints function via distinct, non-redundant pathways suggesting that a combination therapy targeting multiple checkpoints may improve anti-tumor activity.
- Upregulation of alternative immune checkpoints may result in the adaptive resistance to the tumor immune checkpoint monotherapy. Targeting more than one immune checkpoint may overcome this adaptive resistance.
- A combination therapy targeting the PD-1/L1 and VISTA pathways is a promising treatment strategy that offers a better potential for patients to achieve objective response over monotherapy alone.

Study Objectives

Primary

- Phase 1a: Dose Escalation
 - To determine the safety and tolerability, dose-limiting toxicities (DLTs), maximum tolerated dose (MTD), and recommend Phase 2 dose (RP2D) of daily oral CA-170 in patients with advanced solid tumors or lymphomas

- Phase 1b: Dose Expansion
 - To confirm the safety and tolerability of oral CA-170 in patients with advanced solid tumors or lymphomas shown to be sensitive to anti-PD-1 or anti-PD-L1 therapy and/or in tumor types known to express PD-L1 or VISTA, such as: melanoma, non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), Hodgkin lymphoma (HL), urothelial carcinoma (UC), and head and neck squamous cell carcinoma (SCCCHN).

Secondary

- To assess the pharmacokinetic (PK) profile
- To assess the preliminary anti-cancer activity
- To explore the pharmacodynamic effects of CA-170 on selected markers of immune modulation in peripheral blood and tumor tissue
- To assess the potential association between target-related biomarkers and clinical efficacy

Study Design

Phase 1b: Dose Expansion

- ~250 patients with advanced cancers or lymphomas shown to be sensitive to anti-PD-1 or anti-PD-L1 therapy and/or in tumor types known to express PD-L1 or VISTA, such as: melanoma, NSCLC, RCC, HL, UC, and SCCCHN.

Study Status

- This study was initiated in June 2016
- As of May 2017, the study has treated a total of 20 patients across 6 dose levels with 800 mg QD as the highest dose level evaluated so far. There have been no reports of DLTs - the study continues with further dose escalation and expansion
- More information is available at www.clinicaltrials.gov (NCT02812875)

References
