Anti-Tumor Activity of CUDC-101, a Novel Small Molecule Inhibitor of HDAC, EGFR and Her2, in Hepatocellular Cancer (HCC)

Rudi Bao, Hui Qu, Dagong Wang, Ling Yin, Brian Zifcak, Yi Chen, Yue Liu, Xu Tao, Hai-Xiao Zhai, Cheng-Jung Lai, Xiong Cai, Changgeng Qian

Curis Inc., 45 Moulton Street, Cambridge, MA 02138

Introduction

Hepatocellular cancer (HCC) is the 5th most common cancer and the 3rd leading cause of cancer death worldwide. Its incidence in industrialized countries is increasing due to hepatitis C virus infection. The late diagnosis and inherent resistance of this disease to available treatments generally leave HCC patients with few effective therapeutic options, so that an unmet medical need exists.

CUDC-101 Potently Inhibits HDAC, EGFR and Her2

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC50 (nM) in Enzyme Assays</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAHA</td>
<td>HDAC 60.0, EGFR NA, Her2 NA</td>
</tr>
<tr>
<td>Erlotinib</td>
<td>NA 48.0, 134.5</td>
</tr>
<tr>
<td>Lapatinib</td>
<td>NA 10.2</td>
</tr>
<tr>
<td>CUDC-101</td>
<td>4.4</td>
</tr>
</tbody>
</table>

- HDAC inhibition: 5-10 fold more potent than SAHA
- EGFR inhibition: 10-20 fold more potent than Erlotinib
- Her2 inhibition: 10-fold more potent than Erlotinib & similar to lapatinib

Selectivity of CUDC-101 Against a 72-Kinase Panel

- 72 kinases screened
- Weak inhibitor of VEGFR2, Lyn, Abl-1, FGR2, Fh3, Ret and Lck kinases (IC50 values are within the range of 1-5 mM)
- Inhibition of other kinases is less than 50% at 10 mM

Proposed Mechanism for Synergistic Multi-Targeting of HDAC, EGFR & Her2

- EGFRi and/or Her2i often results in Her2C-met/AKT survival pathway upregulation and evasion of apoptosis by cancer cells
- HDACi blockade of survival pathways improves efficacy

CUDC-101 Simultaneously Inhibits 3 Clinically Validated Cancer Targets: HDAC, EGFR & Her2

CUDC-101 Effectively Inhibits Proliferation of Human Liver Cancer Cell Lines

Intermittent Dosing of CUDC-101 Induces Tumor Growth Inhibition in HepG2 Xenografts

CUDC-101 Induces Tumor Growth Inhibition in Hep3B Xenografts

Conclusions

- CUDC-101, a selective small molecule inhibitor of HDAC, EGFR and Her2, displays anti-proliferation activities in vitro against human HCC cell lines
- CUDC-101 induces tumor regression/stasis in HCC tumor xenografts in nude mice without overt toxicity
- CUDC-101 displays potent inhibition of both HDAC activity and EGFR phosphorylation in HCC tumor xenografts in nude mice
- CUDC-101 displays a favorable safety profile (data not shown)
- The simultaneous inhibition of HDAC, EGFR, and Her2 by CUDC-101 in a single small molecule may have PK and safety advantages over treatment with 2-3 separate agents
- CUDC-101 is being prepared for a Ph I trial in oncology against solid tumors